Letter to the Editor: Response to Arterial Stiffness Index Is Not a Stiffness Parameter But a Ventriculo-Arterial Coupling Factor

Yan Li, Ji-Guang Wang, Eamon Dolan, Eoin O’Brien, Tine W. Hansen, Hans Ibsen, Masahiro Kikuya, Yutuka Imai, Tom Richart, Lutgarde Thijs and Jan A. Staessen

Hypertension 2007;49;8-9; originally published online Jan 2, 2007; DOI: 10.1161/01.HYP.0000254948.10037.4a

Hypertension is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2007 American Heart Association. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://hyper.ahajournals.org/cgi/content/full/49/2/e8
Response to Arterial Stiffness Index Is Not a Stiffness Parameter But a Ventriculo-Arterial Coupling Factor

We defined the ambulatory arterial stiffness index (AASI) as unity minus the regression slope of the brachial diastolic on systolic blood pressure.1,2 AASI, therefore, models the dynamic relation between diastolic and systolic pressure throughout the day. We concur with Westerhof et al3 that AASI is an indirect measure of arterial stiffness. Several hemodynamic factors influence AASI, including ventriculo-arterial coupling. In this regard, AASI does not differ from other measures of arterial stiffness, including pulse wave velocity, which many experts consider as the gold standard.

To further assess the physiological meaning of AASI, we partially implemented the proposal of Westerhof et al.3 We computed in our 348 Chinese subjects1 the decay time of aortic pressure during diastole (\(\tau\)). We rewrote \(\tau\) as \([60 \times \text{mean arterial pressure}]/(\text{heart rate} \times \text{pulse pressure})\). We averaged the \(\tau\) values obtained from the blood pressure readings in each 24-hour ambulatory recording. Across our study sample,1 \(\tau\) was normally distributed (Shapiro–Wilk’s W, 0.995; \(P=0.34\)), averaging (SD) 1.84 (0.29) seconds. We found an inverse association (\(r=-0.21\); \(P<0.0001\)) between \(\tau\) and AASI (Figure), which strengthens the concept that AASI is a measure of arterial stiffness. In the final formula, Westerhof et al3 defined the slope of diastolic on systolic blood pressure as the ratio of diastolic to systolic blood pressure and, therefore, assumed an intercept of 0. We did not force the regression line through the origin,1,2 because during diastole, when blood flow drops to 0, this is not the case for blood pressure.

The discussion on what AASI stands for should not detract attention from its prognostic significance. To date, 1 cross-sectional analysis4 and 3 prospective cohort studies2-5,6 demonstrated association of AASI either with signs of target organ damage in never-treated hypertensive patients2 or with the incidence of cardiovascular mortality and morbidity.2,5,6 AASI is particularly predictive of stroke,2,5,6 even at levels of blood pressure within the normotensive range.2,6 When adjusted for pulse pressure, AASI retained its predictive value.2,5,6 Currently ongoing analyses of the Copenhagen cohort showed that AASI predicts stroke over and beyond aortic pulse wave velocity.

Because AASI reflects more than just arterial stiffness in the narrow sense of the word, some experts proposed a name change. AASI should not belie its name. The rationale for a name change, in that AASI reflects more than just arterial stiffness, is equally applicable to most other measures of arterial function, including pulse wave velocity.

Disclosures

None.

Yan Li

Ji-Guang Wang

Shanghai Institute of Hypertension

Shanghai Jiaotong University Medical School

Shanghai, China

Eamon Dolan

Cambridge University Hospital

Addenbrooke’s Hospital

Cambridge, United Kingdom

Eoin O’Brien

Conway Institute of Biomolecular and Biomedical Research

University College Dublin

Dublin, Ireland

Tine W. Hansen

Hans Ibsen

Copenhagen University Hospital

Copenhagen, Denmark

Masahiro Kikuya

Yutuka Imai

Tohoku University Graduate School of Pharmaceutical Science and Medicine

Sendai, Japan

Tom Richart

Lutgarde Thijs

Jan A. Staessen

Division of Hypertension and Cardiovascular Rehabilitation

Department of Cardiovascular Diseases

University of Leuven

Leuven, Belgium

Letter to the Editor

e9

Letter to the Editor: Ambulatory Arterial Stiffness Index Is Not a Stiffness Parameter But a Ventriculo-Arterial Coupling Factor
Nico Westerhof, Jan-Willem Lankhaar and Berend E. Westerhof
Hypertension 2007;49;7-; originally published online Dec 26, 2006; DOI: 10.1161/01.HYP.0000254947.07458.90
Hypertension is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 75251
Copyright © 2007 American Heart Association. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/cgi/content/full/49/2/e7
Ambulatory Arterial Stiffness Index Is Not a Stiffness Parameter But a Ventriculo-Arterial Coupling Factor

To the Editor:

Recent hypertension research has shown that large artery compliance is an important determinant of systolic pressure, pulse pressure, and cardiovascular disease. Many methods exist to determine compliance or its inverse, arterial stiffness; the time constant of the aortic pressure decay in diastole, the ratio of stroke volume over pulse pressure, and pulse wave velocity are among the most used. These methods require either invasive measurements or 2 simultaneous measurements and are not practical to use in epidemiological studies or in night–day variations. Dolan et al.1 recently suggested the use of the Ambulatory Arterial Stiffness Index (AASI), defined as 1 minus the slope of the (linear) relation between diastolic and systolic pressure, as a measure of arterial stiffness. The AASI is easy to measure non-invasively and over long time periods. The AASI, although associated with pulse pressure, augmentation index, and other measures of vascular resistance, heart period, and pressure. The AASI, although associated with pulse pressure, augmentation index, and other measures of vascular resistance, heart period, and pressure.

Arterial stiffness, was criticized by Laurent,2 Benetos and Lacolley,3 and Gavish4 and defended by Dolan et al.1 Thus, the question of whether AASI is a proper arterial stiffness parameter has not been answered.

Here we derive the AASI from basic principles. The ratio of stroke volume, SV, over pulse pressure, PP, is a measure of total arterial compliance: C=SV/PP, or PP=SV/C. The ratio of mean pressure, Pm, and cardiac output, Q, is a measure of systemic vascular resistance, R. With SV times heart rate, HR, being cardiac output, it follows that Pm=Q×R=SV×HR×R or SV×T/R, with T heart period (R–R interval). Thus, PP/Pm=T/RC=T/τ with τ=RC, the characteristic decay time of aortic pressure in diastole.

We approximate mean pressure by Pm=(Pp+2Pd)/3, and pulse pressure is PP=Pp−Pd, with Pp and Pd systolic and diastolic pressure. Inserting this into PP/Pm, we obtain the following: (Pp−Pd)(Pp/3+2Pd/3)=T/τ, rearrangement gives the following: Pp=Pp(3−T/τ)(3+2T/τ), Thus, 1 minus the slope of the relation between diastolic and systolic pressure equals the following:

\[
\text{AASI} = 1 - \frac{(3-T/\tau)(3+2T/\tau)}{(T/\tau)(1+2T/3\tau)}
\]

Taking τ=1.5s and T=0.86s (70 bpm), we obtain AASI=0.41 (experimental data 0.33 to 0.56). A stiffer arterial system, that is, decreased compliance and, thus, smaller τ, results in an increased AASI. If we assume that compliance depends on pressure, the ratio T/τ appears again in the formula, together with pressure, and, thus, the AASI depends not only on total arterial compliance or its inverse, arterial stiffness, but also systemic vascular resistance, heart period, and on pressure.

T is the characteristic time determined by the heart, and τ is the characteristic time of the arterial system.5 Therefore, the AASI depends on both the heart and the arterial system. The ratio T/τ is a (temporal) ventriculo-arterial coupling factor; it has been shown that T/τ is similar in mammals at rest, resulting in similar systolic and diastolic pressures in mammals.5 Thus, the AASI is a coupling factor as well.

Increased arterial stiffness (with R, T, and pressure constant) results in an increase in both AASI and pulse pressure, and, therefore, AASI correlates with indicators of arterial stiffness but is not a measure of arterial stiffness: it is a measure of ventriculo-arterial coupling.

Source of Funding

This study was funded, in part, by grant NHS2003B274 from the Netherlands Heart Foundation.

Disclosures

B.E.W. has ownership interest of >$10 000 in BMEYE BV. The remaining authors report no conflicts.

Nico Westerhof

Laboratory for Physiology and Department of Pulmonary Diseases
Institute for Cardiovascular Research VU University Medical Center Amsterdam, the Netherlands

Jan-Willem Lankhaar

Department of Pulmonary Diseases Institute for Cardiovascular Research VU University Medical Center Amsterdam, the Netherlands

Berend E. Westerhof

BMEYE BV Amsterdam, the Netherlands

2. Laurent S. Surrogate measures of arterial stiffness: do they have additive predictive value or are they only surrogates of a surrogate. Hypertension. 2006;47:325–326.