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Abstract

Background: Studies of knockout and transgenic mice have demonstrated key roles for genes 

encoding components of the Renin Angiotensin System (RAS) in blood pressure (BP) regulation. 

However, whether or not polymorphisms in these genes contribute to the causation of essential 

hypertension in humans is still a matter of debate.   

Methods and Results: We performed an experiment with dense tagging single nucleotide 

polymorphism (SNP) coverage of four genes encoding proteins that control the overall activity 

of the cascade,  namely renin (REN), angiotensinogen (AGT), angiotensin converting enzyme 

(ACE) and angiotensin converting enzyme 2 (ACE2), in two Irish populations. Both clinic and 

24-hour ambulatory BP measurements were available from population I (n=387), whereas just 

clinic BP was measured in population II (n=1024). Of the 23 polymorphisms genotyped, only a 

single renin gene polymorphism, REN-5312C/T, showed consistent statistically significant 

associations with elevated diastolic pressures. Carriage of one REN-5312T allele was associated 

with the following age and sex adjusted increments in diastolic pressures (mean [95% confidence 

interval], mmHg); Population I, clinic 1.5[0.3, 2.8], daytime 1.4[0.4, 2.4], night-time 1.3[0.4, 

2.3], and Population II, clinic 1.1[0.1, 2.1]. Haplotypic analyses and multivariate stepwise 

regression analyses were in concordance with individual SNP analyses.

Conclusions: The REN-5312T allele had previously been shown to result in increased in vitro 

expression of the renin gene. We have now shown, in two independent populations, that carriage 

of a REN-5312T allele is associated with elevated diastolic BP. These data provide evidence that 

renin is an important susceptibility gene for arterial hypertension in Caucasians.

Key words: Renin Angiotensin System, Renin, Polymorphism, Gene, Blood Pressure
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The Renin Angiotensin System (RAS) plays important roles in the regulation of blood pressure 

(BP) and electrolyte balance, and also in the pathogenesis of atherosclerosis.1-3 In the first and 

rate limiting step of the RAS, renin (REN) catalyses the cleavage of angiotensinogen (AGT) into 

angiotensin I. Angiotensin I can then be further catalysed to angiotensin II by angiotensin 

converting enzyme (ACE). Angiotensin II raises BP through potent vasoconstriction and sodium 

retention1, 2 and it also promotes cell growth, fibrosis and inflammation in cardiovascular and 

renal tissues.3 Recently, however, some important additional pathways in the RAS have been 

elucidated.4 These include the discovery that there is a second angiotensin converting enzyme 

(ACE2) which catalyses the conversion of angiotensin I and angiotensin II, to angiotensin(1-9) 

and angiotensin(1-7), respectively.5-7 Angiotensin(1-9) is an inactive nonapeptide, while 

angiotensin(1-7) appears to act as a natural antagonist for angiotensin II, in that it has potent 

vasodilator, natriuretic, antigrowth and endothelium protective properties.8, 9

Studies of knockout and transgenic mice have confirmed the role of genes encoding 

proximal RAS components in BP regulation. Targeted disruption of the AGT, REN and ACE 

genes in mouse models resulted in decreased pressures,10-12 while disruptions in ACE2 resulted 

in higher BP.13 A double transgenic rat, expressing both the human renin gene and the human 

angiotensinogen gene, develops severe early hypertension and end-organ damage, and usually 

dies by the eighth week of life.14 Hence it appears that the overall activity of the cascade, both in 

the circulation and in renal and vascular tissues, is critically dependant on levels of 

angiotensinogen protein and renin enzymatic activity, and on the balance of activity between the 

ACE and ACE2 enzymes.

While candidate gene studies have provided good evidence that polymorphisms in AGT 

and ACE result in altered plasma protein concentrations, whether or not polymorphisms in RAS 

genes are associated with BP level in humans and contribute to the causation of essential 
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hypertension is still a matter of debate.15 Many published reports of positive associations have 

not been replicated in subsequent studies.16 Small sample sizes, limited statistical power, 

population heterogeneity, and inaccurate phenotypic assessments are all likely to have 

contributed to this situation. In addition most studies have tested the association of single genes, 

or even single polymorphisms, with BP level or hypertension. In studying the genetics of 

complex traits such as hypertension, the assumption that a single genetic mutation is a necessary 

and sufficient cause of disease is unwise – instead we have to think of a web of causation 

involving multiple and complex pathways.17 Susceptibility to hypertension is likely to entail 

many genes acting in an additive or interactive manner. 

The RAS represents a perfect example where the cumulative effects of a number of 

variations in the genes encoding components of the cascade, acting together with environmental 

factors, could result in considerable alteration in activity of the system. We previously reported 

an association between a renin gene distal enhancer polymorphism (REN-5312C/T) and BP level 

in a group of Irish bank workers.18 The aim of this study was to confirm and extend this finding, 

through performing an experiment with dense tagging single nucleotide polymorphism (SNP) 

coverage of all four genes that are thought to control RAS activity. We studied the associations 

of individual SNPs and haplotypes with BP level both in the original population, and in a second 

large Irish population. We also performed multivariate stepwise regression analyses, examining 

for additive effects of genes and environmental factors on BP level. 

Methods

Population descriptions 

Population I: This cohort of 815 current and retired Caucasian bank employees and their 

spouses were free of diagnosed hypertension and vasoactive drugs when recruited to the Allied 
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Irish Bank Study.19 At the baseline (phase I) examination, conducted between 1989 and 1991, 

age, gender, smoking habit, alcohol consumption, salt intake, past medical history, current drug 

treatments, height, weight, clinic and 24-hour ambulatory blood pressures were recorded. 

Between 1996 and 2001, after a mean interval of 8.4 years, 441 subjects responded to a written 

invitation to undergo repeated assessments. At this time, only four subjects were taking 

antihypertensive medication, and these discontinued therapy one week prior to the phase II 

assessments. At the phase II examination, all phase I measurements were repeated, and in 

addition blood was drawn for biochemical measurements and for the extraction of DNA.  We 

excluded 9 participants because of technically unsatisfactory ABPM recordings, and 45 

participants in whom DNA extraction was unsuccessful. Thus the total number of participants 

included in the present analysis was 387. All subjects provided written informed consent to each 

phase of the study. The study protocols of the two phases were approved by the Beaumont 

Hospital Research Ethics Committee. 

Population II: A second cohort of 1024 current and retired Caucasian bank employees and their 

spouses aged between 18 and 80 years were recruited to the Allied Irish Bank study between 

June 2003 and June 2004.  Age, gender, smoking habit, alcohol consumption, salt intake, past 

medical history, current drug treatments, height, weight and clinic blood pressure were recorded. 

Blood samples were drawn for biochemical measures and for the extraction of DNA. All subjects 

provided written informed consent. The study protocol was approved by the Beaumont Hospital 

Research Ethics Committee. 

Blood Pressure and Laboratory Measurements 

Sitting clinic BP was measured from the right arm using a mercury sphygmomanometer 

(population I) or a regularly calibrated validated automated sphygmomanometer (Omron HEM-

705CP) (population II). Blood pressure was measured in the brachial artery 3 times at 5-minute 
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intervals. The mean of the last 2 measurements was recorded as representative of clinic BP. 

Ambulatory BP measurements in population I were made every half-hour throughout a 24-hour 

period using validated oscillometric 90202 or 90207 SpaceLabs recorders (SpaceLabs, 

Wokingham, Berkshire, UK). Mean daytime (mean of all measurements between 0900 and 2100 

hours), and night-time (mean of all measurements between 0100 and 0600 hours) systolic and 

diastolic pressures were calculated for each individual for each phase. For population 1, both the 

phase I and phase II, clinic, daytime and night-time, BP measurements were included in the 

analyses models. 

Non-fasting total cholesterol, triglycerides and glucose were measured using standard 

enzymatic methods on a Roche/Hitachi 912 automated analyser (Roche Diagnostics, Basel 

Switzerland) in population I, and a Cholestech LDX lipid analyser (Cholestech Corp, California, 

USA) in population II. 

Identification of Gene Sequence Variants and Genotyping.

Genomic DNA was extracted from leukocytes from both populations by a salting out 

procedure.20 For the REN and ACE2 genes, DNA from 20 subjects (10 normotensive and 10 

hypertensive) was screened for mutations in the known promoter regions (REN; -750 to +47, and 

ACE2; -1224 to +121) and in the protein coding regions (10 REN exons, 18 ACE2 exons and at 

least 40bp of flanking intronic regions). The human renin gene distal enhancer region (-5868 to -

5226) was also screened for mutations. As previously described, this was achieved by a 

combination of ion-pairing reversed-phase partially denaturing high-performance liquid 

chromatography and direct sequencing.18  Ten REN gene SNPs and three ACE2 SNPs were 

detected, and these were genotyped in population I. Using the multiple-marker haplotype r2

criterion, implemented as Criterion 11 of the TagIT software package 

(http://www.ucl.ac.uk/tcga/software/)21  five REN tag SNPs and two ACE2 tag SNPs were found 
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to capture 85% of the variation (r2=0.85) within these genes in population I. Hence only these 

were genotyped in population II.

SNPs in the coding and intronic regions of the ACE and AGT genes were selected using 

HapMap (www.hapmap.org  data release #22). Fifteen tag SNPs in the AGT gene and five tag 

SNPs in the ACE gene, each with a frequency of at least 5% in the Centre d'Etude du 

Polymorphisme Humain Caucasian (CEPH) HapMap population, were identified using “pairwise 

tagging” in the Haploview Tagger software, with an r2 cutoff of 0.85. 22 All 20 SNPs were 

genotyped in both populations. Further LD analysis revealed that 8 SNPs (4 pairs) in the AGT 

gene, and 2 SNPs (1 pair) in the ACE gene, had R2 values of >0.85 within both populations. 

Hence, in order to reduce redundancy, the SNP from each pair with the most missing genotypic 

data was excluded. Hence only 11 AGT tag SNPs and 4 ACE tag SNPs were included in the 

final analyses. In addition to the SNPs selected using HapMap, the commonly studied ACE 

insertion/deletion (I/D) variant was genotyped and included in the analysis.

Genotyping of SNPs was performed by KBiosciences (Herts, U.K.) using modified 

TaqMan assays (www.kbiosciences.co.uk). Genotyping of the ACE I/D variant was adapted 

from the method by Viswanathan et al23  and is described in detail in the supplementary methods 

section. Briefly, it was performed by PCR amplification using a flanking primer pair to detect the 

insertion (I = 490bp) and deletion (D= 190bp) alleles and confirmed using a second PCR 

designed to recognise the insertion specific sequences (335bp).

Statistical analysis 

Statistical analyses were performed using Plink (version 1.04, 

http://pngu.mgh.harvard.edu/purcell/plink/)24, 25 and the Stata statistical package (version 8.2, 

StataCorp, College Station, Texas) .
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Phenotypic data are expressed as mean ± SD, as median [interquartile range], or as 

numbers (percentages). Alcohol intake followed a lognormal distribution, and was log-

transformed prior to inclusion in any analysis. Two way ANOVAs and Chi-squared tests were 

used to compare phenotypic variables across the two populations and genders. 

Departure from Hardy–Weinberg equilibrium was tested by Chi-squared tests. Linear 

regression analysis was used to determine whether individual RAS polymorphisms predicted 

clinic and ambulatory systolic and diastolic BP levels after adjustment for age and sex. Additive 

genetic models were used. For any variants found to be significantly associated with BP, 

likelihood ratio testing was performed so as to compare the fits of additive and dominant genetic 

models. The primary objective of this study was to replicate our previous finding of an 

association between the REN-5312T allele and BP level. Hence a p-value of p<0.05 was 

considered significant for all analyses concerning this SNP within population II. In recognition 

of the risks of multiple comparisons, all other analyses were performed in two independent 

populations, and Bonferroni corrections were to be applied where consistent associations were 

found in both populations with p-values <0.05. Study power was in excess of 90% to detect 2 

mmHg systolic and 1 mmHg diastolic BP increments (ambulatory daytime and night-time 

pressures for population I, clinic pressures for population II) associated with genetic variants 

where the minor allele frequency was 20% or greater. 

Haplotypes were inferred for each subject from the SNPs in each gene using the “--hap-

phase” function in Plink. Testing for associations of haplotype with BP levels was performed, by 

including sex, age, and predicted individual haplotypes in linear regression models, weighted 

according to haplotype probability. Rare haplotypes (<5% frequency) were pooled for analysis.  

Finally, multiple regression analysis with backwards step-wise removal of non-significant 

variables was performed seeking additive effects of genes and environmental factors on BP level. 
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Age, sex, salt addition at meals, alcohol intake, body mass index (BMI) and all RAS gene 

polymorphisms were all initially included in the models. The five phenotypic variables, already 

established as influencing BP level, were retained in the models throughout. However, in 

successive steps, the least significant genetic variables were excluded, such that the final models 

only retained genetic variables with p<0.05. 

Results

Population Characteristics 

42% of population I and 52% of population II were female (Table 1).  By comparison with 

population I, participants in population II were older (p<0.001), and were more likely to be 

current or ex smokers (p<0.01) and to add salt to meals (p<0.001). Both total cholesterol 

(p<0.001) and triglycerides (p<0.001) were lower in population II. In both populations, female 

participants were younger (p=0.01), and were less likely to smoke cigarettes than males 

(p>0.05). Self reported alcohol intake was lower amongst female participants (p<0.001), as was 

BMI (p=0.001), total cholesterol (p<0.001) and triglycerides (p<0.001). Clinic pressures were 

also lower in females than in males in both populations (systolic p<0.001, and diastolic 

p<0.001), but the between sex difference was less marked in population II (population x sex 

interaction p=0.02). 

Associations of individual RAS polymorphisms with BP

All polymorphisms in the four genes, REN, AGT, ACE and ACE2, were found to be in HWE, 

and minor allele frequencies in the two populations were similar (see supplementary table 1). 

Mean age and sex-adjusted differences in systolic and diastolic pressures associated with 

carriage of one minor allele for each RAS polymorphism are illustrated in figures 1 and 2 

respectively. Of the 23 polymorphisms (22 tag SNPS and 1 ACE I/D) genotyped, only the distal 
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enhancer renin gene polymorphism, REN-5312C/T, showed consistent statistically significant 

associations with elevated pressures. Carriage of one REN-5312T allele was associated with the 

following age and sex adjusted increments in diastolic pressures (mean [95% confidence 

interval], mmHg); Population 1, clinic 1.5[0.3, 2.8], daytime 1.4[0.4, 2.4], night-time 1.3[0.4, 

2.3], and Population 2, clinic 1.1[0.1, 2.1]. Diastolic blood pressures of younger and older, males 

and females, in the two populations are illustrated according to REN-5312C/T genotype in 

Figure S1. While REN-5312C/T heterozygotes consistently demonstrated higher pressures than 

CC homozygotes, the pressures of TT homozygotes were not always further elevated above the 

values of the CT heterozygotes. Despite these findings being more in keeping with a dominant 

effect, formal likelihood ratio testing showed equivalence of age and gender adjusted additive 

and dominant genetic models, in both populations, for all measures of diastolic pressures. 

Carriage of one REN-5312T allele was also associated with statistically significant age and sex 

adjusted increments in systolic pressures in population I; clinic 2.1[0.0, 4.1], daytime 2.0[0.6, 

3.4], and night-time 3.6[0.9, 2.3]. Clinic systolic pressures tended to be higher in population II 

participants carrying a REN-5312T allele 0.7[-1.1, 2.6], but this difference was not statistically 

significant.

Associations of RAS haplotypes with blood pressure

Estimated RAS gene haplotype frequencies were similar in the two populations (see Table S2). 

Ambulatory and clinic pressures were found to differ with renin gene haplotype (figures S2 and 

S3). This was in large part attributable to the age and sex adjusted estimates for BP of the 

TCAAG haplotype being significantly higher than the corresponding pressure estimates of the 

remaining haplotypes – this haplotype alone carries the REN-5312T variant. Similar to the 

analyses of the associations of individual polymorphisms with BP levels, only diastolic pressures 
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were consistently statistically significantly elevated amongst carriers of the TCAAG haplotype in 

the REN gene versus non-carriers of this haplotype in the two populations. 

Stepwise regression analysis of the associations of environmental factors and RAS 

polymorphisms with blood pressure levels 

Multiple regression analysis of diastolic BP in both populations showed that REN-5312C/T was 

significantly and independently related to both clinic and ambulatory pressures, after adjustment 

for traditional covariates including sex, age, salt usage, alcohol intake and BMI (Table 2). The 

REN-5312C/T SNP was the only polymorphism that remained in all models for DBP in the two 

populations. Consistent with the findings for individual SNP analysis, this same SNP remained 

in the models for daytime and night time SBP in population I, but not in the model for clinic 

pressures for either population.

Discussion

This study has shown for the first time the potential importance of the renin gene in the 

regulation of blood pressure level in humans. In two independent populations, carriage of one 

REN-5312T allele was associated with an increment in diastolic BP ranging from 1.1 to 1.8 

mmHg, depending on whether clinic or ambulatory pressures were the end-point, and on whether 

univariate, multiple regression analysis or haplotype analyses were utilized. Importantly, 

pressure differences of this magnitude have been shown to be associated with increases in the 

incidence of stroke and heart attack26, 27. Systolic pressures also tended to be higher in subjects 

carrying one or two REN-5312T alleles, but the increments were not consistently statistically 

significant.

None of the RAS polymorphisms, other than REN-5312C/T, were found to have 

consistent statistically significant associations with BP level in both Irish populations. For the 12 

variants with a minor allele frequency of 20% or greater, we had 90% power to detect 2mmHg 
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systolic and 1mmHg diastolic blood pressure differences in both populations. It is therefore 

unlikely that these particular polymorphisms contribute to significant blood pressure differences 

in North-Western European Caucasian populations. However it would not be correct to 

generalize these findings to other ethnic groups. In addition true clinically relevant effects of 

RAS variants on BP may not have been detected, because of insufficient study power for variants 

with minor allele frequencies less than 20%. Furthermore because of the SNP selection and 

tagging strategies adopted for this study, coverage of all variants in the four genes was not 

complete - only SNPs in the coding, promoter and enhancer regions of the REN and ACE2 genes 

were studied, and while variants in both the coding and intronic regions of the AGT and ACE 

genes were included, those in the promoter and enhancer regions were not. Lastly, because of the 

size of the two populations, this study only sought direct associations of polymorphisms and 

environment with BP level – there was insufficient power to look for gene-gene interactions, or 

for gene-environment interactions. Hence these complexities remain to be examined within much 

larger cohorts. 

In the past, several studies reported associations between renin restriction fragment length 

polymorphisms and essential hypertension in a range of ethnic groups.28-31 However others 

reported no association between the same renin gene variants.29, 32-35 A missense mutation in 

exon 9 (10501G/A) was associated with both hypertension and elevated PRA in a Japanese 

population (212 hypertensives vs. 209 controls).36 Haplotypes composed of the intron 1 BglI 

variant and the exon 9 10501G/A SNP were found to be associated with hypertension in 329 

hyperlipidaemic US Caucasian men and women (140 hypertensives, 141 normotensives, and 48 

hypertensive patients who had suffered a stroke) aged 40 to 70 years. 37 The exon 9 10501G/A 

SNP was associated with hypertension in a group of 689 Gulf Arabs from the United Arab 

Emirates (326 hypertensives and 363 age- and gender-matched controls).38 Zhu and colleagues 

reported C-4021T and C-3212T to be associated with hypertension in African Americans but not 
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in European Americans.39 A SNP in intron 4 (54620025A>C) was associated with elevated BP 

and hypertension in two populations of Spanish women aged greater than 40 years old (total 

n=1,418).40 Most recently Rana and colleagues reported that neither the Intron 4 G-131T SNP 

nor the Thr68Thr REN gene SNPs were individually associated with elevated BP in a group of 

611 male and 656 female age-matched Caucasian Americans.  However they did find a 

significant epistatic interaction between the REN Intron 4 SNP and the ACE intron 24 (G-6A) 

SNP.41 Overall few of the previous candidate gene studies addressing the question of whether 

renin polymorphisms influence BP level have been replicated, and none have provided evidence 

of functionality.

Renin catalyses the first and rate limiting step of the RAS cascade. A 466-base pair 

element (nucleotides -5777 to -5312) has been reported to activate the renin promoter 

approximately 60-fold in primary cultures of human chorionic cells.42, 43 Fuchs and colleagues 

went on to describe 45% greater rates of renin gene transcription in the presence of a -5312T 

allele rather than a -5312C allele.43 Hence it is not surprising that we have now shown in two 

populations that this polymorphism is associated with elevated BP. We previously described that 

plasma renin activity was similar in hypertensive REN-5312T allele carriers and hypertensive 

CC homozygotes.18 Hence it does not appear that the REN-5312C/T polymorphism influences 

the highly regulated secretion of active renin from kidney juxtaglomerular cells into the systemic 

circulation, and it appears much more likely that functionality is mediated by altered local tissue 

renin levels.

If renin is an important susceptibility gene for arterial hypertension, one might question 

why this was not identified in several recent whole genome association studies (WGASs) that 

were conducted in considerably larger populations.44-46 Three of these studies listed SNPs in 

chromosome 1 as being amongst their top hits, but none of these were close to the renin gene 
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region, at 1q32. The genotyping chips used in these WGASs did include several renin gene 

SNPs, but none specifically genotyped REN-5312C/T. Previous work from our group has 

suggested that REN-5312C/T is not in strong linkage disequilibrium with any other renin SNPs, 

even the nearby REN 5’-flank -5434 SNP.18 Unfortunately, as REN-5312C/T has not been 

genotyped as part of the HapMap project, the lack of linkage disequilibrium surrounding this 

SNP cannot be verified. Furthermore, while the usage of very small p-values (p < 5 X 10-7),

necessitated because of the level of multiple testing within WGASs does protect against false 

positive findings, it markedly reduces power to detect small but true effects. The limited power 

of these WGASs has been acknowledged, and it is well recognised that many more common 

variants are likely to exist with effects on blood pressure. It is an advantage of gene-centric 

studies that the p-value that is regarded as significant does not have to be reduced so 

dramatically, and power to detect true associations is retained.  

In conclusion, the REN-5312T allele had previously been shown to result in increased in 

vitro expression of the renin gene. We have now shown, in two independent populations, that 

carriage of a REN-5312T allele is associated with elevated diastolic BP. These data provide 

evidence that renin is an important susceptibility gene for arterial hypertension in Caucasians. 
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Table 1. Characteristics of the Participants of Populations I and II

Population I† Population II 

Variable 

Males     (n=224) Females    (n=163) Males   (n=493) Females    (n=531) 

Age, years 46 ± 9* 42 ± 10 48 ± 14 46 ± 14 

Current/Ex smoker, % 71 (32) 45 (28) 217 (44) 206 (39) 

Alcohol intake, units/week 15[8-24] 6[2-11] 12[6-20] 5[2-9] 

Salt usage at table, % 128 (57) 98 (60) 375 (76) 397 (75) 

Diabetes mellitus, % 2 (1) 1 (1) 10 (2) 6 (1) 

Body Mass index, kg/m2 27 ± 3 24 ± 4 27 ± 4 25 ± 4 

Clinic SBP‡, mmHg 130 ± 17 116 ± 19 126 ± 17 120 ± 19 

Clinic DBP‡, mmHg 82 ± 11 74 ± 11 79 ± 9 75 ± 9 

Daytime SBP‡, mmHg 131 ± 12 120 ± 12 

Daytime DBP‡, mmHg 82 ± 8 75 ± 8 

Night- time SBP‡, mmHg 112 ± 12 104 ± 10 

Night-time DBP‡, mmHg 67 ± 8 61 ± 7 

Total cholesterol, mmol/L 5.7 ± 1.2 5.3 ± 1.2 5.1 ± 1.1 5.0 ± 0.9 

Triglycerides, mmol/l 1.4 ± 0.9 1.0 ± 0.6 1.7 ±1.1 1.3 ± 0.7 

*Data expressed as mean ± SD, median [interquartile range] or as number (%).  
†Population I participant information refers to the phase II assessment.  
‡SBP = systolic blood pressure. DBP = diastolic blood pressure. mmHg = millimetres of 
mercury

111011011100 ((( ((((( (((((((((((222)22222222222

m 4

1

m2222 2727272727 ±±± ±± 3 33 33 2424242424 ±±±±± 4 44 2727272727 ± ± ± ± ± 4

1313131330 00 ± ± ± ±± 1717171717 11111166 666 ± ± ± ±± 1919191919 126 ± 1
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Table 2. Multiple regression analysis of ambulatory and clinic, systolic and diastolic pressures in the two populations.

 Systolic BP Diastolic BP 

Population I Population II Population I Population II 

 Day Night Clinic Clinic Day Night Clinic Clinic 

        

Age  

(per year) 

*0.19 0.000 0.19 0.000 0.67 0.000 0.56 0.000 0.09 0.001 0.230.000 0.32 0.000 0.16 0.000

Sex

(female = 0, male = 1) 

-7.69 0.000 -6.23 0.000 -5.59 0.000 -1.46 0.222 -4.13 0.000 -3.410.000 -4.17 0.000 -2.52 0.000

BMI

(per kg/m2)

0.05 0.001 0.05 0.001 0.13 0.000 0.88 0.000 0.02 0.133 0.02 0.119 0.05 0.001 0.63 0.000

Alcohol

(per unit/week) 

0.14 0.000 0.05 0.130 0.17 0.001 0.31 0.000 0.07 0.004 0.01 0.657 0.08 0.018 0.10 0.003

Salt usage at table 

(no = 0, yes = 1) 

2.42 0.003 0.62 0.448 1.40 0.244 1.17 0.349 1.21 0.044 0.06 0.916 0.71 0.358 -0.08 0.906

ACE Intron9 6329T     1.13 0.009  1.46 0.008

3 0

0 13 0 88 0 02

3 0.00.00.00.00.000 -5.5.5.5.5.595959595  0.000 - -1.11 4646464646 0.222222222 -- ---4.4.4.4.4.13313133 0.000

0.001 00 1133 0 00.000 00 00000000000 00 8888 0.00 00 00 00 000000000 00 0022 0.133

 by on January 4, 2010 circgenetics.ahajournals.orgDownloaded from 

http://circgenetics.ahajournals.org


22

AGT Intron1 459T     6.92 0.001 6.66 0.001 7.30 0.007

AGT Intron1 751T   -4.93 0.019 -6.63 0.001 -7.79 0.003

AGT Intron2 6384C     5.70 0.005 6.79 0.000 6.57 0.011

AGT Intron2 6436T     -7.11 0.013 -7.34 0.007 -8.63 0.018

REN 5flank 5312T 2.49 0.001 2.88 0.000   1.65 0.002 1.68 0.001 1.81 0.009 1.67 0.008

*Data expressed as differences in blood pressure p-value
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Figure Legends: 

Figure 1. Differences in systolic blood pressure (mean difference and 95% confidence interval, 

mmHg) per copy of minor allele for each polymorphism in the two populations. Significant 

results are indicated by filled symbols. 

Figure 2. Differences in diastolic blood pressure (mean difference and 95% confidence interval, 

mmHg) per copy of minor allele for each polymorphism in the two populations. Significant 

results are indicated by filled symbols. 
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SUPPLEMENTAL MATERIAL 

Supplemental methods 

Genotyping of the ACE insertion/deletion polymorphism 

Ace genotypes were determined by PCR amplification using a Flanking primer pair to detect 

the Insertion (I = 490bp) and Deletion (D= 190bp) alleles and confirmed using a second PCR 

designed to recognise the insertion specific sequences (335bp). Flanking PCR samples were 

amplified in a 15µl PCR reaction containing 25ng DNA, 2.5 pmol of each primer (FLKF: 

CTGGAGACCACTCCCATCCTTTCT,  FLKR: 

GATGTGGCCATCACATTCGTCACGAT; synthesized by MWG Biotech Ag, Germany), 

200 µM dNTPs, 2.5mM MgCl2, 3μl GoTaqTM Flexi Buffer, and 0.625U Go TaqTM DNA 

Polymerase (Promega). Amplifications were carried out in 96well plates on a  DNA 

EngineTM (MJ Research, UK) for 1 cycle of 5 min at 95 oC followed by 30 cycles of 30sec at 

95oC, 30sec at 58oC and 30 sec at 72oC with a final elongation step of 72oC for 5 min. 

Confirmatory PCR samples were amplified in a 15µl PCR reaction containing 25ng DNA, 

0.125 pmol of each primer (MISF:TGGGACCACAGCGCCCGCCACTAC,  MISR: 

TCGCCAGCCCTCCCATGCCCATAA), 200 µM dNTPs, 1.25mM MgCl2, 3μl GoTaqTM 

Flexi Buffer, and 0.625U Go TaqTM DNA Polymerase (Promega). Amplifications were 

carried out for 1 cycle of 5 min at 95 oC followed by 31 cycles of 30sec at 95oC, 30sec at 

68oC and 30 sec at 72oC with a final elongation step of 72oC for 5 min. PCR products were 

pooled,  separated by electrophoresis on 12% polyacrylamide gels and visualized by ethidium 

bromide staining.  

Genotyping quality control 

All genotyping included at least 5% duplicates. Where initial genotyping results were 

inconclusive, genotyping was repeated once, as was genotyping of at least 10% of successful 

assays. Genotype concordance, both for within assay and between assay duplications, was in 

 by on January 4, 2010 circgenetics.ahajournals.orgDownloaded from 

http://circgenetics.ahajournals.org


 1

excess of 99% for all polymorphisms. The final genotyping success rate was in excess of 

99% for all SNPs. 
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Supplemental Tables 

Table S1: Allele frequencies and p-values for the Chi-squared test for departure from 

Hardy-Weinberg Equilibrium for each SNP in both populations 

   Population I Population II

SNP Rs number* Minor 

allele

MAF HWE  

p-value 

MAF HWE 

p-value

REN_5'flank_-5312 rs12750834 A 0.18 0.399 0.18 0.831

REN_Intron3_5090 rs2272237 G 0.40 0.516 0.38 0.505

REN_Intron4_5912 rs1917539 G 0.11 0.716 0.11 0.867

REN_Intron6_9479 rs3730103 G 0.05 0.249 0.07 0.794

REN_Intron8_10194 rs3795574 T 0.10 0.671 0.13 0.892

AGT_Intron1_459 rs3889728 T 0.15 0.555 0.13 0.743

AGT_Intron1_751 rs2004776 T 0.40 1.000 0.40 0.813

AGT_Intron1_1239 rs7539020 T 0.28 0.703 0.28 0.856

AGT_Intron2_4386 rs11568054 A 0.06 0.283 0.05 1.000

AGT_Intron2_5745 rs2478544 G 0.13 0.085 0.14 1.000

AGT_Intron2_5820 rs2478545 A 0.18 0.802 0.19 1.000

AGT_Intron2_6384 rs2493132 C 0.26 0.850 0.28 0.938

AGT_Intron2_6436 rs2493131 T 0.01 1.000 0.01 1.000

AGT_Intron3_8432 rs2478523 G 0.33 0.565 0.33 0.829

AGT_Intron3_9672 rs11122575 G 0.09 0.154 0.08 0.537

AGT_Exon5_11610 rs7079 T 0.32 0.074 0.33 0.319

ACE_Intron2_1864 rs4295 C 0.36 0.238 0.37 0.381

ACE_Intron5_3795 rs4305 A 0.44 0.159 0.45 0.404

ACE_Exon8_5489 rs4309 T 0.44 0.883 0.42 0.845
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ACE_Intron9_6329 rs4311 T 0.46 0.139 0.48 1.000

ACE_Intron15_289bp_ID rs4646994 I 0.46 0.883 0.46 0.658

ACE2_Intron3_9570R  rs2285666 A 0.16 1.000 0.18 0.559

ACE2_Intron4_12268R  rs971249 A 0.40 0.479 0.40 0.365

 

*Rs number = dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) reference number 

MAF = minor allele frequency 

HWE = Hardy Weinberg Equilibrium 

NS = not significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 by on January 4, 2010 circgenetics.ahajournals.orgDownloaded from 

http://circgenetics.ahajournals.org


 4

Table S2: Haplotype frequencies in population I and population II 

Haplotype frequencyGene Haplotypes 

Population I Population II

CGAAG 0.41 0.38

CCAAG 0.21 0.21

TCAAG 0.18 0.17

CCGAG 0.10 0.10

CCAGT 0.05 0.06

REN 

CCAAT 0.05 0.07

  

CCCGCGTCAAT 0.31 0.32

CCCGCGTCAAG 0.20 0.20

TTTGCGTCGAG 0.14 0.13

CTCGGACCGAG 0.11 0.11

CTTGCGCCAGG 0.08 0.08

CCCACGTCAAG 0.05 0.05

CTTGCACCGAG 0.05 0.05

AGT 

rare <0.05 <0.05

  

GGTCI 0.42 0.40

CACTD 0.34 0.36

GGCTD 0.09 0.10

ACE 

GACCD 0.06 0.06

 rare <0.05 <0.05
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GG 0.43 0.44

GA 0.41 0.39

ACE2 

AG 0.16 0.17
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Supplemental Figures and Figure Legends 

Figure S1. Distribution of diastolic blood pressures (daytime, night-time and clinic, means 

and standard deviations) according to REN-5312C/T genotype amongst younger and older 

males and females in the two populations. Numbers within each box pertain to number of 

subjects per genotype group while those above the boxes pertain to standard deviation of 

blood pressure measurements. 
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Figure S2. Differences in systolic blood pressure (mean difference 95% CI, mmHg,) between carriers and non-carriers of each haplotype in 

population I and population II. Statistically significant results are indicated by filled symbols. P values represent the overall p-value for the gene. 
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Figure S3. Differences in diastolic blood pressure (mean difference 95% CI, mmHg,) between carriers and non-carriers of each haplotype in 

population I and population II. Statistically significant results are indicated by filled symbols. P values represent the overall p-value for the gene. 
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