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Abstract

Background: Studies of knockout and transgenic mice have demonstrated key roles for genes
encoding components of the Renin Angiotensin System (RAS) in blood pressure (BP) regulation.
However, whether or not polymorphisms in these genes contribute to the causation of essential

hypertension in humans is still a matter of debate.

Methods and Results: We performed an experiment with dense tagging single nucleotide
polymorphism (SNP) coverage of four genes encoding proteins that control the overall activity
of the cascade, namely renin (REN), angiotensinogen (AGT), angiotensin converting enzyme
(ACE) and angiotensin converting enzyme 2 (ACE2), in two Irish populations_. Both clinic and
24-hour ambulatory BP measurements were available from populéﬁéﬁ _I!(n;3_é75, whereas just
clinic BP was measurgd in bopuiation I (n=1024); of the 23 polymorphisms_genotyped, only a
single renin gene polymorphism, REN=5312C/T, showéd .consistent statistically significant
associations with eleyated diast?i\lié pressuresCarrlageof one REN-53 12T allele was associated
with the following age and sex adjusted increments in diastolic pressures (mean [95% confidence
interval], mmHg); Population I, clinic 1.5[0.3, 2.8], daytime 1.4[0.4, 2.4], night-time 1.3[0.4,

2.3], and Population II, clinic 1.1[0.1, 2.1]. Haplotypic analyses and multivariate stepwise

regression analyses were in concordance with individual SNP analyses.

Conclusions: The REN-5312T allele had previously been shown to result in increased in vitro
expression of the renin gene. We have now shown, in two independent populations, that carriage
of a REN-5312T allele is associated with elevated diastolic BP. These data provide evidence that

renin is an important susceptibility gene for arterial hypertension in Caucasians.

Key words: Renin Angiotensin System, Renin, Polymorphism, Gene, Blood Pressure

Introduction
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The Renin Angiotensin System (RAS) plays important roles in the regulation of blood pressure
(BP) and electrolyte balance, and also in the pathogenesis of atherosclerosis.'™ In the first and
rate limiting step of the RAS, renin (REN) catalyses the cleavage of angiotensinogen (AGT) into
angiotensin I. Angiotensin I can then be further catalysed to angiotensin II by angiotensin
converting enzyme (ACE). Angiotensin II raises BP through potent vasoconstriction and sodium
retention’ % and it also promotes cell growth, fibrosis and inflammation in cardiovascular and
renal tissues.” Recently, however, some important additional pathways in the RAS have been
elucidated.® These include the discovery that there is a second angiotensin converting enzyme
(ACE2) which catalyses the conversion of angiotensin I and angiotensin II, to angiotensin(1-9)
and angiotensin(1-7), respectively.”” Angiotensin(1-9) is an inactive] n_Qnapepfide, while
angiotensin(1-7) appears.to.actgs a natural antagonist for angiotensin II, in that it has potent
vasodilator, natriuretig, antig._rowtfl“arid_ éﬁdothélium pféteétive b.r.ope.rti.és.g’ o)

Studies of knockout and:trahsgéhic asclarfrenaticsc or genes encoding
proximal RAS components 1n BP .reg.u.lati.(.)ﬁ.: Targeted dlsruptlon of ﬁl.e:.AGT, REN and ACE

1912 While disruptions in ACE2 resulted

genes in mouse models resulted in decreased pressures,
in higher BP."* A double transgenic rat, expressing both the human renin gene and the human
angiotensinogen gene, develops severe early hypertension and end-organ damage, and usually
dies by the eighth week of life."* Hence it appears that the overall activity of the cascade, both in
the circulation and in renal and vascular tissues, is critically dependant on levels of

angiotensinogen protein and renin enzymatic activity, and on the balance of activity between the

ACE and ACE2 enzymes.

While candidate gene studies have provided good evidence that polymorphisms in AGT
and ACE result in altered plasma protein concentrations, whether or not polymorphisms in RAS

genes are associated with BP level in humans and contribute to the causation of essential
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hypertension is still a matter of debate.'> Many published reports of positive associations have
not been replicated in subsequent studies.'® Small sample sizes, limited statistical power,
population heterogeneity, and inaccurate phenotypic assessments are all likely to have
contributed to this situation. In addition most studies have tested the association of single genes,
or even single polymorphisms, with BP level or hypertension. In studying the genetics of
complex traits such as hypertension, the assumption that a single genetic mutation is a necessary
and sufficient cause of disease is unwise — instead we have to think of a web of causation
involving multiple and complex pathways.'” Susceptibility to hypertension is likely to entail

many genes acting in an additive or interactive manner.

The RAS represents a perfect example where the cumulati'{/lé"-e-ffeict'sl of 2 number of
variations in the geneseficoding components of thefcascade, acting together with environmental
factors, could result in _ponsi_dgraple _alt_ére_tﬁon_in agtiyilfy 'of_ the __sy_stém.__We _p__féyiously reported
an association between a renin gené Savase "polyrﬂr.ldrphis',m (REN-5312C/T) and BP level
in a group of Irish bank work.ér.:s..\l.8 Thé ai.n.l of thls study wés tI(; conﬁrm énd extend this finding,
through performing an experiment with dense tagging single nucleotide polymorphism (SNP)
coverage of all four genes that are thought to control RAS activity. We studied the associations
of individual SNPs and haplotypes with BP level both in the original population, and in a second
large Irish population. We also performed multivariate stepwise regression analyses, examining

for additive effects of genes and environmental factors on BP level.

Methods
Population descriptions

Population I: This cohort of 815 current and retired Caucasian bank employees and their

spouses were free of diagnosed hypertension and vasoactive drugs when recruited to the Allied

Downloaded from circgenetics.ahgjournal s.org by on January 4, 2010


http://circgenetics.ahajournals.org

Irish Bank Study.'” At the baseline (phase I) examination, conducted between 1989 and 1991,
age, gender, smoking habit, alcohol consumption, salt intake, past medical history, current drug
treatments, height, weight, clinic and 24-hour ambulatory blood pressures were recorded.
Between 1996 and 2001, after a mean interval of 8.4 years, 441 subjects responded to a written
invitation to undergo repeated assessments. At this time, only four subjects were taking
antihypertensive medication, and these discontinued therapy one week prior to the phase 11
assessments. At the phase Il examination, all phase I measurements were repeated, and in
addition blood was drawn for biochemical measurements and for the extraction of DNA. We
excluded 9 participants because of technically unsatisfactory ABPM recordings, and 45
participants in whom DNA extraction was unsuccessful. Thus the tot__a_l_'numbé.r.of participants
included in the present analysis,was 387. All subjects provided written informed consent to each
phase of the study. The studyl proféédls ..o.f' _:the t§_vb phaéés .w.ere ébprdvéd by tﬁe Beaumont
Hospital Research Ethi;:s Commlttee ( -cula onetice

Population II: A second coh.(.).ri[. \(Sf 1024 current and ..re:ﬁ.red. Cauca51an Ba;nk employees and their
spouses aged between 18 and 80 years were recruited to the Allied Irish Bank study between
June 2003 and June 2004. Age, gender, smoking habit, alcohol consumption, salt intake, past
medical history, current drug treatments, height, weight and clinic blood pressure were recorded.
Blood samples were drawn for biochemical measures and for the extraction of DNA. All subjects
provided written informed consent. The study protocol was approved by the Beaumont Hospital

Research Ethics Committee.
Blood Pressure and Laboratory Measurements

Sitting clinic BP was measured from the right arm using a mercury sphygmomanometer
(population I) or a regularly calibrated validated automated sphygmomanometer (Omron HEM-

705CP) (population II). Blood pressure was measured in the brachial artery 3 times at 5-minute
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intervals. The mean of the last 2 measurements was recorded as representative of clinic BP.
Ambulatory BP measurements in population I were made every half-hour throughout a 24-hour
period using validated oscillometric 90202 or 90207 SpaceLabs recorders (SpaceLabs,
Wokingham, Berkshire, UK). Mean daytime (mean of all measurements between 0900 and 2100
hours), and night-time (mean of all measurements between 0100 and 0600 hours) systolic and
diastolic pressures were calculated for each individual for each phase. For population 1, both the
phase I and phase II, clinic, daytime and night-time, BP measurements were included in the

analyses models.

Non-fasting total cholesterol, triglycerides and glucose were measured using standard
enzymatic methods on a Roche/Hitachi 912 automated analyser (Rbéhe :iDi'a.gf.l';(:)stics, Basel
Switzerland) in population 1§ afd a .Cholestech LDX lipid analysgr (Cholestech Corp, California,
USA) in population II5y [ I. . | |
Identification of Gene Sequ_erl_'.c'\e_'.\.fa_riél.:l'ts':zl%i("i. Genotypmg _. -

Genomic DNA was extracted from leukocytes from both populations by a salting out
procedure.”’ For the REN and ACE2 genes, DNA from 20 subjects (10 normotensive and 10
hypertensive) was screened for mutations in the known promoter regions (REN; -750 to +47, and
ACE2; -1224 to +121) and in the protein coding regions (10 REN exons, 18 ACE2 exons and at
least 40bp of flanking intronic regions). The human renin gene distal enhancer region (-5868 to -
5226) was also screened for mutations. As previously described, this was achieved by a
combination of ion-pairing reversed-phase partially denaturing high-performance liquid
chromatography and direct sequencing.'® Ten REN gene SNPs and three ACE2 SNPs were
detected, and these were genotyped in population I. Using the multiple-marker haplotype r*
criterion, implemented as Criterion 11 of the TagIT software package

(http://www.ucl.ac.uk/tcga/software/)*' five REN tag SNPs and two ACE2 tag SNPs were found
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to capture 85% of the variation (r*=0.85) within these genes in population I. Hence only these

were genotyped in population II.

SNPs in the coding and intronic regions of the ACE and AGT genes were selected using

HapMap (www.hapmap.org data release #22). Fifteen tag SNPs in the AGT gene and five tag

SNPs in the ACE gene, each with a frequency of at least 5% in the Centre d'Etude du
Polymorphisme Humain Caucasian (CEPH) HapMap population, were identified using “pairwise
tagging” in the Haploview Tagger software, with an r* cutoff of 0.85. ** All 20 SNPs were
genotyped in both populations. Further LD analysis revealed that 8 SNPs (4 pairs) in the AGT
gene, and 2 SNPs (1 pair) in the ACE gene, had R? values of >0.85 within both populations.
Hence, in order to reduce redundancy, the SNP from each pair with the most ﬁii-ssing genotypic
data was excluded. Hence only 11 AGT tag SN_P"s and 4 ACE tag SNPs were included in the
final analyses. In addition to th¢ SNPs ;sel_;cted_us_i“ng. I&abMapz the commonly .s.tudied ACE
insertion/deletion (I/D) variant ﬁ;s}as "gen‘(')'t'yp'ec'l- and 1nc1uded in the' 4nalysis.

Genotyping of SNPs was performed by KBiosciences (Herts, U.K.) using modified

TagMan assays (www.kbiosciences.co.uk). Genotyping of the ACE I/D variant was adapted
from the method by Viswanathan et al”® and is described in detail in the supplementary methods
section. Briefly, it was performed by PCR amplification using a flanking primer pair to detect the
insertion (I =490bp) and deletion (D= 190bp) alleles and confirmed using a second PCR

designed to recognise the insertion specific sequences (335bp).
Statistical analysis

Statistical analyses were performed using Plink (version 1.04,

24,25

http://pngu.mgh.harvard.edu/purcell/plink/) and the Stata statistical package (version 8.2,

StataCorp, College Station, Texas) .
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Phenotypic data are expressed as mean + SD, as median [interquartile range], or as
numbers (percentages). Alcohol intake followed a lognormal distribution, and was log-
transformed prior to inclusion in any analysis. Two way ANOVAs and Chi-squared tests were

used to compare phenotypic variables across the two populations and genders.

Departure from Hardy—Weinberg equilibrium was tested by Chi-squared tests. Linear
regression analysis was used to determine whether individual RAS polymorphisms predicted
clinic and ambulatory systolic and diastolic BP levels after adjustment for age and sex. Additive
genetic models were used. For any variants found to be significantly associated with BP,
likelihood ratio testing was performed so as to compare the fits of additive and dominant genetic
models. The primary objective of this study was to replicate our p'réQiou:is ﬁndmg of an
association between the’/REN-53 12T allele and.BP level. Hence a p-value of p<0.05 was
considered significantior all apglyse_:s éonéemi_ng Fhis SNP_within p_opqiatio_r% II In recognition
of the risks of multiple compariéons, ali'dther -an'alyées wéré peffoﬁhéd in two independent
populations, and Bonferroni c..o.l.-*.r\e.ctio.ﬁs were to ‘l.)elz.:a.l.op:.li.ed”vvhlé.r.e. con31stent associations were
found in both populations with p-values <0.05. Study power was in excess of 90% to detect 2
mmHg systolic and 1 mmHg diastolic BP increments (ambulatory daytime and night-time
pressures for population I, clinic pressures for population II) associated with genetic variants

where the minor allele frequency was 20% or greater.

Haplotypes were inferred for each subject from the SNPs in each gene using the “--hap-
phase” function in Plink. Testing for associations of haplotype with BP levels was performed, by
including sex, age, and predicted individual haplotypes in linear regression models, weighted

according to haplotype probability. Rare haplotypes (<5% frequency) were pooled for analysis.

Finally, multiple regression analysis with backwards step-wise removal of non-significant

variables was performed seeking additive effects of genes and environmental factors on BP level.
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Age, sex, salt addition at meals, alcohol intake, body mass index (BMI) and all RAS gene
polymorphisms were all initially included in the models. The five phenotypic variables, already
established as influencing BP level, were retained in the models throughout. However, in
successive steps, the least significant genetic variables were excluded, such that the final models

only retained genetic variables with p<0.05.

Results
Population Characteristics

42% of population I and 52% of population II were female (Table l) By comparlson with
population I, part1c1pants in populatlon IT were older (p<0.001), and were/more hkely to be
current or ex smokers (p<0 01yrandto addysalt to meals (p<0 001) Both, tatal'eholesterol
(p<0.001) and trlglycerldes (p<0 001) were lower in populatlon II In both populations, female
participants were younger(p=0: 01) and were less 11kely to smoke 01garettes than males
(p>0.05). Self reported alcohol intake was lower amongst female participants (p<0.001), as was
BMI (p=0.001), total cholesterol (p<0.001) and triglycerides (p<0.001). Clinic pressures were
also lower in females than in males in both populations (systolic p<0.001, and diastolic
p<0.001), but the between sex difference was less marked in population II (population x sex

interaction p=0.02).
Associations of individual RAS polymorphisms with BP

All polymorphisms in the four genes, REN, AGT, ACE and ACE2, were found to be in HWE,

and minor allele frequencies in the two populations were similar (see supplementary table 1).

Mean age and sex-adjusted differences in systolic and diastolic pressures associated with
carriage of one minor allele for each RAS polymorphism are illustrated in figures 1 and 2

respectively. Of the 23 polymorphisms (22 tag SNPS and 1 ACE I/D) genotyped, only the distal
9
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enhancer renin gene polymorphism, REN-5312C/T, showed consistent statistically significant
associations with elevated pressures. Carriage of one REN-5312T allele was associated with the
following age and sex adjusted increments in diastolic pressures (mean [95% confidence
interval], mmHg); Population 1, clinic 1.5[0.3, 2.8], daytime 1.4[0.4, 2.4], night-time 1.3[0.4,
2.3], and Population 2, clinic 1.1[0.1, 2.1]. Diastolic blood pressures of younger and older, males
and females, in the two populations are illustrated according to REN-5312C/T genotype in
Figure S1. While REN-5312C/T heterozygotes consistently demonstrated higher pressures than
CC homozygotes, the pressures of TT homozygotes were not always further elevated above the
values of the CT heterozygotes. Despite these findings being more in keeping with a dominant
effect, formal likelihood ratio testing showed equivalence of age aftd gender "e_l'djusted additive
and dominant genetic models, in both populations, for all measuges of diastolic pressures.
Carriage of one REN+5312T ._allelé“wa.ys'_ also ass.o.ciated' .wi.th. stat.i.s.tice.llly'signiﬁcant age and sex
adjusted increments in ;c,ysto.li.c\ [.>“r“e_ss-ur_.és 1n péﬁp]éﬁ_én I; Cl.i_r.lic 21 [00,4 1]-,“da.ytime 2.0[0.6,
3.4], and night-time J6[0 0222 EHHERStONCHresHtastErdea-o BERERerth population IT
participants carrying a REN-5312T allele 0.7[-1.1, 2.6], but this difference was not statistically

significant.
Associations of RAS haplotypes with blood pressure

Estimated RAS gene haplotype frequencies were similar in the two populations (see Table S2).
Ambulatory and clinic pressures were found to differ with renin gene haplotype (figures S2 and
S3). This was in large part attributable to the age and sex adjusted estimates for BP of the
TCAAG haplotype being significantly higher than the corresponding pressure estimates of the
remaining haplotypes — this haplotype alone carries the REN-5312T variant. Similar to the

analyses of the associations of individual polymorphisms with BP levels, only diastolic pressures

10
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were consistently statistically significantly elevated amongst carriers of the TCAAG haplotype in

the REN gene versus non-carriers of this haplotype in the two populations.

Stepwise regression analysis of the associations of environmental factors and RAS

polymorphisms with blood pressure levels

Multiple regression analysis of diastolic BP in both populations showed that REN-5312C/T was
significantly and independently related to both clinic and ambulatory pressures, after adjustment
for traditional covariates including sex, age, salt usage, alcohol intake and BMI (Table 2). The
REN-5312C/T SNP was the only polymorphism that remained in all models for DBP in the two
populations. Consistent with the findings for individual SNP analysis, this same SNP remained

in the models for daytime and night time SBP in population I, but not in the fnodel for clinic
pressures for either popﬁlaﬁon. | .

This study has shown for the-first timie the potential importance-of the renin gene in the
regulation of blood pressure level in humans. In two independent populations, carriage of one
REN-5312T allele was associated with an increment in diastolic BP ranging from 1.1 to 1.8
mmHg, depending on whether clinic or ambulatory pressures were the end-point, and on whether
univariate, multiple regression analysis or haplotype analyses were utilized. Importantly,
pressure differences of this magnitude have been shown to be associated with increases in the
incidence of stroke and heart attack®® . Systolic pressures also tended to be higher in subjects

carrying one or two REN-5312T alleles, but the increments were not consistently statistically

significant.

None of the RAS polymorphisms, other than REN-5312C/T, were found to have
consistent statistically significant associations with BP level in both Irish populations. For the 12

variants with a minor allele frequency of 20% or greater, we had 90% power to detect 2mmHg

11
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systolic and ImmHg diastolic blood pressure differences in both populations. It is therefore
unlikely that these particular polymorphisms contribute to significant blood pressure differences
in North-Western European Caucasian populations. However it would not be correct to
generalize these findings to other ethnic groups. In addition true clinically relevant effects of
RAS variants on BP may not have been detected, because of insufficient study power for variants
with minor allele frequencies less than 20%. Furthermore because of the SNP selection and
tagging strategies adopted for this study, coverage of all variants in the four genes was not
complete - only SNPs in the coding, promoter and enhancer regions of the REN and ACE2 genes
were studied, and while variants in both the coding and intronic regions of the AGT and ACE
genes were included, those in the promoter and enhancer regions Were not: LaSﬂy, because of the
size of the two populations, this study only sought direct associagions of polymorphisms and
environment with BPlevel —._theré. Was iﬁspfﬁciént poxln.ler. td loék fof géhe—géﬁe interactions, or
for gene-environment i.r.ltera.ct.i\o.r;s“T Hencé thesé__co;nﬁlexitié_é re.f_n.airi_ tonbe egérﬁined within much
larger cohorts.

In the past, several studies reported associations between renin restriction fragment length

28-31
However others

polymorphisms and essential hypertension in a range of ethnic groups.
reported no association between the same renin gene variants.”**>> A missense mutation in
exon 9 (10501G/A) was associated with both hypertension and elevated PRA in a Japanese
population (212 hypertensives vs. 209 controls).’® Haplotypes composed of the intron 1 BglI
variant and the exon 9 10501G/A SNP were found to be associated with hypertension in 329
hyperlipidaemic US Caucasian men and women (140 hypertensives, 141 normotensives, and 48
hypertensive patients who had suffered a stroke) aged 40 to 70 years. >’ The exon 9 10501G/A
SNP was associated with hypertension in a group of 689 Gulf Arabs from the United Arab

Emirates (326 hypertensives and 363 age- and gender-matched controls).*® Zhu and colleagues

reported C-4021T and C-3212T to be associated with hypertension in African Americans but not

12
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in European Americans.”> A SNP in intron 4 (54620025A>C) was associated with elevated BP
and hypertension in two populations of Spanish women aged greater than 40 years old (total
n=1,418).*° Most recently Rana and colleagues reported that neither the Intron 4 G-131T SNP
nor the Thr68Thr REN gene SNPs were individually associated with elevated BP in a group of
611 male and 656 female age-matched Caucasian Americans. However they did find a
significant epistatic interaction between the REN Intron 4 SNP and the ACE intron 24 (G-6A)
SNP.*' Overall few of the previous candidate gene studies addressing the question of whether
renin polymorphisms influence BP level have been replicated, and none have provided evidence

of functionality.

Renin catalyses the first and rate limiting step of the RAS '(I:'a.'scadie. A 4:66-base pair
element (nucleotides -5777t0 53 1._2).has_been reported to aptivafc_e the renin promoter
approximately 60-foldiin pri_m.e\u.'xcqltujre_s._ .of hqmgn pﬁ_oﬁo_n_ic _gellé._42’ 43 Fuq.ls..and colleagues
went on to describe 45% greatef rates (;f renin’gene franséﬁptioh inf‘the presence of a -5312T
allele rather than a -5312C al.l.e.l:e.::‘.13 H.e.nce.: 1t 1s hgtl surprlsmg that wehave now shown in two
populations that this polymorphism is associated with elevated BP. We previously described that
plasma renin activity was similar in hypertensive REN-5312T allele carriers and hypertensive
CC homozygotes.'® Hence it does not appear that the REN-5312C/T polymorphism influences
the highly regulated secretion of active renin from kidney juxtaglomerular cells into the systemic
circulation, and it appears much more likely that functionality is mediated by altered local tissue

renin levels.

If renin is an important susceptibility gene for arterial hypertension, one might question

why this was not identified in several recent whole genome association studies (WGASs) that

44-46

were conducted in considerably larger populations. Three of these studies listed SNPs in

chromosome 1 as being amongst their top hits, but none of these were close to the renin gene

13
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region, at 1q32. The genotyping chips used in these WGASs did include several renin gene
SNPs, but none specifically genotyped REN-5312C/T. Previous work from our group has
suggested that REN-5312C/T is not in strong linkage disequilibrium with any other renin SNPs,
even the nearby REN 5°-flank -5434 SNP.'® Unfortunately, as REN-5312C/T has not been
genotyped as part of the HapMap project, the lack of linkage disequilibrium surrounding this
SNP cannot be verified. Furthermore, while the usage of very small p-values (p <5 X 107),
necessitated because of the level of multiple testing within WGASs does protect against false
positive findings, it markedly reduces power to detect small but true effects. The limited power
of these WGASSs has been acknowledged, and it is well recognised that many more common
variants are likely to exist with effects on blood pressure. It is an ‘advatitage df gene-centric
studies that the p-value that is regarded as significant does not have to be reduced so
dramatically, and power to detect true .z'_i..ss.(');eiatier.ls is retaihed. |

In conclusion, the REN-53157 hfidi S previoueiy been shown to result in increased in
vitro expression of the renin gene We.ha.v.e:il(f)\.zv‘ shown,lntwo .i.n.de];.).erzl.d:ent populations, that
carriage of a REN-5312T allele is associated with elevated diastolic BP. These data provide

evidence that renin is an important susceptibility gene for arterial hypertension in Caucasians.
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Table 1. Characteristics of the Participants of Populations I and II

Population I Population II

Males (n=224) Females (n=163) Males (n=493) Females (n=531)

Variable
Age, years 46 £ 9% 42+10 48 + 14 46 £ 14
Current/Ex smoker, % 71 (32) 45 (28) 217 (44) 206 (39)
Alcohol intake, units/week 15[8-24] 6[2-11] 12[6-20] 5[2-9]
Salt usage at table, % 128 (57) 98 (60) 375 (76) 397 (75)
American Heart
\\HI) '.; IUI
Diabetes mellitus, % 2(1) 1(1) o ‘10@ ) 6 (1)
C o @
Clinic SBP{, mmHg Cafsﬁ)ﬁj@ascular l(ﬁerfetics 126 £ 17 120+ 19
JOURNAL OF THE AMERICAN HEART ASSOCIATION
Clinic DBPf, mmHg 82+ 11 74+ 11 79+9 75+9
Daytime SBP}, mmHg 131+ 12 120+ 12
Daytime DBP}, mmHg 82+8 75+8
Night- time SBP}, mmHg 112+ 12 104 £ 10
Night-time DBP}, mmHg 67+38 61+7
Total cholesterol, mmol/L 5712 53+1.2 51+1.1 5.0+£09
Triglycerides, mmol/l 1.4+09 1.0+ 0.6 1.7+1.1 1.3+0.7
*Data expressed as mean + SD, median [interquartile range] or as number (%).
tPopulation I participant information refers to the phase II assessment.
$SBP = systolic blood pressure. DBP = diastolic blood pressure. mmHg = millimetres of
mercury
20
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Table 2. Multiple regression analysis of ambulatory and clinic, systolic and diastolic pressures in the two populations.

Systolic BP Diastolic BP
Population I Population II Population I Population II
Day Night Clinic Clinic Day Night Clinic Clinic

Age *0.19 0.000 0.19 0.000 0.67 0.000 0.56 0.000 0.09 0.001 0.230.000 0.32 0.000 0.16 0.000
(per year)
Sex 769000 623 400N 5500000 ] 46022 _-4,_13 00003410000 4,17 0000 -2.52 000
(female =0, male = 1) ardlovascular Genetic
BMI 0.05 0.001 0.05 0.001 013 0.000 088 0.000 002 0.133 0.02 0.119 0.05 0.001 0.63 0.000
(per kg/m?)
Alcohol 0.14 %0 0,05°%2%  0.17%%°"  031%% 007  0.01°%7  0.08 %" 0.10 %09
(per unit/week)
Salt usage at table 24209 062% 140 117" 121 0.06%¢ 071 F -0.08 *%%
(no=0,yes=1)
ACE Intron9 6329T 1.13 %0 1.46 %%

21
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AGT Intronl 459T 6.92 0.001 6.66 0.001 730 0.007

AGT Intronl 751T 493 %1 6,630 779 %9

AGT Intron2 6384C 57029 6797 6.57 %%

AGT Intron2 6436T 701900 734097 8 63 001

REN 5flank 5312T 2.49 0001 9 gg 0000 1.65%9%  168%%°  181%% 16720
*Data expressed as differences in blood pressure PV M soehation Q)
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Figure Legends:

Figure 1. Differences in systolic blood pressure (mean difference and 95% confidence interval,
mmHg) per copy of minor allele for each polymorphism in the two populations. Significant

results are indicated by filled symbols.

Figure 2. Differences in diastolic blood pressure (mean difference and 95% confidence interval,
mmHg) per copy of minor allele for each polymorphism in the two populations. Significant
results are indicated by filled symbols.
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SUPPLEMENTAL MATERIAL

Supplemental methods

Genotyping of the ACE insertion/deletion polymorphism

Ace genotypes were determined by PCR amplification using a Flanking primer pair to detect
the Insertion (I =490bp) and Deletion (D= 190bp) alleles and confirmed using a second PCR
designed to recognise the insertion specific sequences (335bp). Flanking PCR samples were
amplified in a 15ul PCR reaction containing 25ng DNA, 2.5 pmol of each primer (FLKF:
CTGGAGACCACTCCCATCCTTTCT, FLKR:
GATGTGGCCATCACATTCGTCACGAT; synthesized by MWG Biotech Ag, Germany),
200 uM dNTPs, 2.5mM MgCl, 3ul GoTaq™ Flexi Buffer, and 0.625U Go Tagq™ DNA
Polymerase (Promega). Amplifications were carried out in 96well plates on a DNA
Engine™ (MJ Research, UK) for 1 cycle of 5 min at 95 °C followed by 30 cycles of 30sec at
95°C, 30sec at 58°C and 30 sec at 72°C with a final elongation step of 72°C for 5 min.
Confirmatory PCR samples were amplified in a 15u] PCR reaction containing 25ng DNA,
0.125 pmol of each primer (MISF:-TGGGACCACAGCGCCCGCCACTAC, MISR:
TCGCCAGCCCTCCCATGCCCATAA), 200 uM dNTPs, 1.25mM MgCl,, 3ul GoTaq™
Flexi Buffer, and 0.625U Go Tag™ DNA Polymerase (Promega). Amplifications were
carried out for 1 cycle of 5 min at 95 °C followed by 31 cycles of 30sec at 95°C, 30sec at
68°C and 30 sec at 72°C with a final elongation step of 72°C for 5 min. PCR products were
pooled, separated by electrophoresis on 12% polyacrylamide gels and visualized by ethidium
bromide staining.

Genotyping quality control

All genotyping included at least 5% duplicates. Where initial genotyping results were
inconclusive, genotyping was repeated once, as was genotyping of at least 10% of successful

assays. Genotype concordance, both for within assay and between assay duplications, was in
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excess of 99% for all polymorphisms. The final genotyping success rate was in excess of

99% for all SNPs.
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Supplemental Tables
Table S1: Allele frequencies and p-values for the Chi-squared test for departure from

Hardy-Weinberg Equilibrium for each SNP in both populations

Population | Population 11

SNP Rs number*  Minor MAF HWE MAF HWE
allele p-value p-value

REN_5'flank -5312 rs12750834 A 0.18 0.399 0.18 0.831
REN Intron3 5090 rs2272237 G 0.40 0.516 0.38 0.505
REN Intron4 5912 rs1917539 G 0.11 0.716 0.11 0.867
REN Intron6 9479 rs3730103 G 0.05 0.249 0.07 0.794
REN Intron8 10194 rs3795574 T 0.10 0.671 0.13 0.892
AGT Intronl 459 rs3889728 T 0.15 0.555 0.13 0.743
AGT Intronl 751 rs2004776 T 0.40 1.000 0.40 0.813
AGT Intronl 1239 1$7539020 T 0.28 0.703 0.28 0.856
AGT Intron2 4386 rs11568054 A 0.06 0.283 0.05 1.000
AGT Intron2 5745 rs2478544 G 0.13 0.085 0.14 1.000
AGT Intron2 5820 rs2478545 A 0.18 0.802 0.19 1.000
AGT Intron2 6384 rs2493132 C 0.26 0.850 0.28 0.938
AGT Intron2 6436 rs2493131 T 0.01 1.000 0.01 1.000
AGT Intron3 8432 152478523 G 0.33 0.565 0.33 0.829
AGT Intron3 9672 rs11122575 G 0.09 0.154 0.08 0.537
AGT Exon5 11610 rs7079 T 0.32 0.074 0.33 0.319
ACE _Intron2 1864 rs4295 C 0.36 0.238 0.37 0.381
ACE Intron5 3795 rs4305 A 0.44 0.159 0.45 0.404
ACE_Exon8 5489 rs4309 T 0.44 0.883 0.42 0.845
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ACE_Intron9 6329 rs4311 T 0.46 0.139 0.48 1.000
ACE _Intronl5 28%p ID  rs4646994 I 0.46 0.883 0.46 0.658
ACE2_Intron3 9570R rs2285666 A 0.16 1.000 0.18 0.559
ACE2 Intron4 12268R rs971249 A 0.40 0.479 0.40 0.365
*Rs number = dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) reference number
MAF = minor allele frequency
HWE = Hardy Weinberg Equilibrium
NS = not significant

3
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Table S2: Haplotype frequencies in population | and population 11

Gene Haplotypes Haplotype frequency

Population I Population II

REN CGAAG 0.41 0.38
CCAAG 0.21 0.21
TCAAG 0.18 0.17
CCGAG 0.10 0.10
CCAGT 0.05 0.06
CCAAT 0.05 0.07

AGT CCCGCGTCAAT 0.31 0.32
CCCGCGTCAAG 0.20 0.20
TTTGCGTCGAG 0.14 0.13
CTCGGACCGAG 0.11 0.11
CTTGCGCCAGG 0.08 0.08
CCCACGTCAAG 0.05 0.05
CTTGCACCGAG 0.05 0.05
rare <0.05 <0.05

ACE GGTCI 0.42 0.40
CACTD 0.34 0.36
GGCTD 0.09 0.10
GACCD 0.06 0.06
rare <0.05 <0.05
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ACE2 GG 0.43 0.44
GA 0.41 0.39

AG 0.16 0.17
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Supplemental Figures and Figure Legends

Figure S1. Distribution of diastolic blood pressures (daytime, night-time and clinic, means

and standard deviations) according to REN-5312C/T genotype amongst younger and older

males and females in the two populations. Numbers within each box pertain to number of

subjects per genotype group while those above the boxes pertain to standard deviation of

blood pressure measurements.
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Figure S2. Differences in systolic blood pressure (mean difference 95% CI, mmHg,) between carriers and non-carriers of each haplotype in

population I and population II. Statistically significant results are indicated by filled symbols. P values represent the overall p-value for the gene.
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Figure S3. Differences in diastolic blood pressure (mean difference 95% CI, mmHg,) between carriers and non-carriers of each haplotype in

population I and population II. Statistically significant results are indicated by filled symbols. P values represent the overall p-value for the gene.
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