Increased Intervisit Blood Pressure Variability and β-Blockade: Measurement Imprecision Related to Bradycardia?
Iddo Z. Ben-Dov and Michael Bursztyn

Hypertension 2010;56;e48; originally published online Sep 13, 2010;
DOI: 10.1161/HYPERTENSIONAHA.110.160978

Hypertension is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/cgi/content/full/56/5/e48
Increased Intervisit Blood Pressure Variability and β-Blockade: Measurement Imprecision Related to Bradycardia?

To the Editor:

In their editorial commentary, Dolan and O’Brien1 reviewed and provided clinical perspective to the series of articles last March in which Rothwell and colleagues2,3 established a clear link between long-term blood pressure variability and hypertension-related outcome. The conceptual introduction of intervisit variability in blood pressure consolidated previous findings based on intra-arterial and noninvasive 24-hour ambulatory measurements.4 Additional observations will help shape the ripening assimilation to management guidelines. In this regard, Webb et al,3 as well as Rothwell et al2 have suggested a medication-class effect on blood pressure variability, which might mediate outcome differences. As highlighted in the editorial,1 assignment to β-adrenergic blockade–based treatment was associated with increased intervisit variability and worse outcome.2 Although a direct effect of a drug on cardiovascular reactivity is plausible, it is somewhat in contrary to the strong link between the mean blood pressure and its variance.5 We suggest an alternative explanation for the association of β-blockers with intervisit variability. Determination of blood pressure relies on detection of Korotkoff sounds (by auscultation) or the pulse wave oscillations (by oscillatory devices). Bradycardia can decrease the precision of these determinations; namely, it can increase the scatter around the true level of blood pressure, because the observer (listener or device) is awaiting the next Korotkoff sound or pulse wave, while deflating the cuff at constant rate. Indeed, in our ambulatory blood pressure measurement data set of referred patients,5 we found a connection between increased awake blood pressure variability and slow heart rate, both measured by the automated ambulatory blood pressure measurement device (Figure). Thus, we speculate that bradycardia induced by β-blockers mediates lack of diagnostic precision, which might have impact on outcome rather than true increase in blood pressure variability. The differential effects of angiotensin antagonists and calcium channel blockers on heart rate might follow the same rationale. In future studies, it would be interesting to explore the degree to which drug effects on variability withstand adjustment for heart rate.

Disclosures
None.

Iddo Z. Ben-Dov
Rockefeller University
New York, NY

Michael Bursztyn
Department of Medicine
Mt. Scopus Campus
Hadassah-Hebrew University Medical Center
Jerusalem, Israel

© 2010 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org

DOI: 10.1161/HYPERTENSIONAHA.110.160978
Response to Increased Intervisit Blood Pressure Variability and ²-Blockade: Measurement Imprecision Related to Bradycardia?

Eamon Dolan and Eoin O'Brien

Hypertension 2010;56;e49; originally published online Sep 13, 2010;
DOI: 10.1161/HYPERTENSIONAHA.110.161034

Hypertension is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/cgi/content/full/56/5/e49
Response to Increased Intervisit Blood Pressure Variability and β-Blockade: Measurement Imprecision Related to Bradycardia?

We welcome the letter from Ben-Dov and Bursztyn1 and agree that further studies are required to confirm the influence of medium-term blood pressure variability (BPV) on outcome and to elucidate the underlying pathogenetic mechanisms. However, we must take issue with the alternative explanation put forward for the association of β-blockers with intervisit BPV.

First, in support of the theory that β-blocker–induced bradycardia can decrease the precision of blood pressure measurement, ambulatory data from a cohort are presented in which subjects with the slowest heart rate had greatest BPV. This association is hardly surprising, but to postulate that it can be explained by measurement inaccuracy with validated automated devices such as those used in the Anglo-Scandinavian Cardiac Outcomes Trial is simply not sustainable.2

The authors then speculate that the theoretical measurement induced by bradycardia accounts for the negative outcome associated with medium-term variability. However, this is refuted in the analysis by Rothwell et al.,3 which confirmed that the prognostic value of visit-to-visit systolic BPV was independent of mean heart rate and heart rate variability in the Anglo-Scandinavian Cardiac Outcomes Trial. Furthermore, the Ohasama group showed that both increased visit-to-visit mean heart rate and heart rate variability were complementary to the prognostic benefit of increased medium-term BPV in a community-dwelling cohort.4

Disclosures

None.

Eamon Dolan
Hypertension Unit
Connolly Hospital
Dublin, Ireland

Eoin O’Brien
Conway Institute
University College Dublin
Dublin, Ireland